4 research outputs found

    Ground-based station network in Arctic and Subarctic Eurasia : an overview

    Get PDF
    The international Pan-Eurasian Experiment (PEEX) program addresses the full spectrum of problems related to climate change in Eurasian Northern latitudes. All PEEX activities rely on the bulk of high-quality observational data provided by the ground and marine stations, remote sensing and satellite tools. So far, no coordinated station network has ever existed in Eurasia, moreover, the current scope of relevant research remains largely unknown as no prior assessment has been done to date. This paper makes the first attempt to overview the existing ground station pool in the Arctic-Boreal region with the focus on Russia. The geographical, climatic and ecosystem representativeness of the current stations is discussed, the gaps are identified and tentative station network developments are proposed.Peer reviewe

    Three-Year Variability Of Energy And Carbon Dioxide Fluxes At Clear-Cut Forest Site In The European Southern Taiga

    Get PDF
    Forest  clearing  strongly  influences  the energy,  water and greenhouse  gas exchange at the land sur face - atmosphere inter face. To estimate effects of clear cutting on sensible (H), latent heat (LE) and  CO2 fluxes the continuous eddy covariance measurements were provided at the recently clear-cut  area situated in the western  part of Russia from spring 2016 to the end of 2018. The possible effects of surrounding  forest on the air flow disturbances and on the spatial pattern of horizontal advection terms within the selected clear-cut area were investigated using a process-based 3D momentum, energy and CO2 exchange  model.  The modeling  results showed a very low contribution  of horizontal advection term into total turbulent momentum  fluxes at flux tower location in case of the southern wind direction. The results of field flux measurements  indicated  a strong inter- and intra-annual  variability of energy and CO2 fluxes. The energy budget is characterized by higher  daily and monthly   LE fluxes throughout  the entire  period  of measurements excepting the first two months after timber harvest. The mean Bowen ratio (β=H/LE) was 0.52 in 2016, 0.30 - in 2017 and 0.35 - in 2018. Analysis of CO2 fluxes during the first year following harvest showed  that the monthly CO2 release at the clear-cut area consistently exceeded the CO2 uptake  rates. The mean net ecosystem  exchange  (NEE) in the period was 3.3±1.3 gC∙m-2∙d-1. During the second and the third years of the flux measurements the clear-cut was also a prevailed sink of CO2 for the atmosphere excepting short periods in June and in the first part  of July when daily CO2  uptake was higher than CO2  release rates. The mean NEE rates  averaged   for  the entire warm period of corresponding  years were 1.2±2.3  gС∙m-2∙d-1 in 2017 and 2.8±2.5  gC∙m-2∙d-1 in 2018, respectively.  The mean ratio between  gross  primary  production  (GPP) and ecosystem  respiration (TER) was 0.58 in 2016, 0.84 - in 2017 and 0.74 - in 2018

    Effects of Algicidal Macrophyte Metabolites on Cyanobacteria, Microcystins, Other Plankton, and Fish in Microcosms

    No full text
    To control harmful algae blooms (HABs), methods based on natural mechanisms are now required. We investigated the effects of an algicide derived from macrophyte metabolites, namely mixtures of gallic, tetradecanoic, heptanoic, and octanoic acids (1:1:1:1 mass ratio, a total concentration of 14 mg/L), on the biomass of cyanobacteria and other plankton and the production of microcystins under experimental conditions. Two types of microcosms have been created: simple (microalgae, cyanobacteria, and zooplankton) and complex (microalgae, cyanobacteria, zooplankton, and planktivorous fish). We observed the dynamics of the phytoplankton structure, the concentrations of microcystins and chlorophyll-a, hydrochemistry, and the status of zooplankton and fish in both types of microcosms with and without algicide for one month (from 19 July to 19 August 2021). The introduction of algicide caused changes in phytoplankton structure, a drop in cyanobacterial biomass, and a decrease in the total concentration of microcystins. Surprisingly, the contributions of the most toxic microcystins (LR form) were higher in both types of microcosms exposed to algicide than in microcosms without algicide. The inhibitory effect on the cyanobacterial biomass was most significant in complex ecosystems (containing fish), while it was only observed at the end of the exposure in simple ecosystems. Not only algicide but also phytoplankton consumed by fish and zooplankton, as well as nutrient excretory activity by both consumers, seem to have impact on cyanobacterial biomass. This study found that the using chemical substances similar to macrophyte metabolites can help regulate HABs and cyanotoxins. However, the results differ depending on ecosystem type

    Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis

    No full text
    Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut–liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans
    corecore